Bamboo–Polylactic Acid (PLA) Composite Material for Structural Applications
نویسندگان
چکیده
Developing an eco-friendly industry based on green materials, sustainable technologies, and optimum processes with low environmental impact is a general societal goal, but this remains a considerable challenge to achieve. Despite the large number of research on green structural composites, limited investigation into the most appropriate manufacturing methodology to develop a structural material at industrial level has taken place. Laboratory panels have been manufactured with different natural fibers but the methodologies and values obtained could not be extrapolated at industrial level. Bamboo industry panels have increased in the secondary structural sector such as building application, flooring and sport device, because it is one of the cheapest raw materials. At industrial level, the panels are manufactured with only the inner and intermediate region of the bamboo culm. However, it has been found that the mechanical properties of the external shells of bamboo culm are much better than the average cross-sectional properties. Thin strips of bamboo (1.5 mm thick and 1500 mm long) were machined and arranged with the desired lay-up and shape to obtain laminates with specific properties better than those of conventional E-Glass/Epoxy laminates in terms of both strength and stiffness. The strips of bamboo were bonded together by a natural thermoplastic polylactic acid (PLA) matrix to meet biodegradability requirements. The innovative mechanical extraction process developed in this study can extract natural strip reinforcements with high performance, low cost, and high rate, with no negative environmental impact, as no chemical treatments are used. The process can be performed at the industrial level. Furthermore, in order to validate the structural applications of the composite, the mechanical properties were analyzed under ageing conditions. This material could satisfy the requirements for adequate mechanical properties and life cycle costs at industrial sectors such as energy or automotive.
منابع مشابه
Effect of Bamboo Flour Grafted Lactide on the Interfacial Compatibility of Polylactic Acid/Bamboo Flour Composites
Bamboo flour (BF) was grafted onto lactide (LA) in the molten state using stannous octoate as a catalyst to form BF-g-LA. Then, polylactic acid (PLA) was blended with BF (PLA/BF, 85/15 wt %) to prepare PLA/BF/BF-g-LA composites using BF-g-LA as a compatibilizer. The grafting rate of BF was characterized using infrared testing and elemental analysis. To investigate the effect of BF-g-LA on the p...
متن کاملStudy of PLA Printability with Flexography Ink: Comparison with Common Packaging Polymer
Today, the economic consumption of biodegradable polymers is of capital importance in many applications. One of the most commonly used biopolymers is polylactic acid (PLA). The printability of the biodegradable film has not been fully investigated. This work tested the printability of polylactic acid (PLA) films and compared the print qualities to common packaging films like low density pol...
متن کاملFabrication of Electrospun Polylactic Acid/Cinnamaldehyde/-Cyclodextrin Fibers as an Antimicrobial Wound Dressing
Cinnamaldehyde (CA) was successfully encapsulated in β-cyclodextrin (β-CD), and polylactic acid (PLA)-based composite fibers were prepared by incorporating CA/β-CD via electrospinning. Morphological, structural, spectral, and antibacterial properties of different weight ratios of PLA:β-CD/CA (88:12, 94:6, 97:3, and 98.5:1.5) and PLA/CA/β-CD fibers were investigated. PLA and CA/β-CD were incorpo...
متن کاملDevelopment and Application of Wood Flour-Filled Polylactic Acid Composite Filament for 3D Printing
This paper presents the development of wood flour (WF)-filled polylactic acid (PLA) composite filaments for a fused deposition modeling (FDM) process with the aim of application to 3D printing. The composite filament consists of wood flour (5 wt %) in a PLA matrix. The detailed formulation and characterization of the composite filament were investigated experimentally, including tensile propert...
متن کاملBiorefinery lignin as filler material in polylactic acid composite
In natural world, lignin is unique and the most abundant renewable carbon source after cellulose, therefore, more applications of adding commercial value of lignin are needed. Polylactic acid (PLA), which has the second highest consumption of bioplastic in the world, is a biodegradable composite with widely application in industry. A filler adding into PLA can decrease the cost of the composite...
متن کامل